Abstract

The regeneration and upgrading of spent LiFePO4 cathodes (S-LFP) were achieved via a one-step hydrothermal treatment. The reducing effect of phytic acid could restore the degraded structure associated with an aqueous Li source. Meanwhile, Li ions are easily chelated by phytic acid groups, and a Li3PO4 coating layer could be formed to reconstruct the surface of the LFP. The regenerated LFP exhibits faster reaction kinetics, larger high-rate charge/discharge capacity, and better cycling performance than commercial LFPs, suggesting that our proposed strategy is a promising technology for the recovery of spent cathode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.