Abstract

The receding horizon H ∞ control (RHHC) problem is investigated in this paper for a class of networked control systems (NCSs) with random delay and packet disordering. A new model is proposed to describe the NCS with random delay which may be larger than one sampling period. The random delay is modeled as a Markov chain while the closed-loop system is described as a Markovian jump system. Sufficient conditions for the closed-loop NCS to be stochastically stable and the performance index to be upper bounded are derived by using the receding optimization principle. Furthermore, by solving a semi-definite programming (SDP) with linear matrix inequalities (LMIs) constraint, a piecewise-constant receding horizon H ∞ controller is obtained, and the designed piecewise-constant controller ensures that the closed-loop NCS achieves a prescribed H ∞ disturbance attenuation level. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.