Abstract

Li-rich layered oxide cathodes have attracted extensive attention due to their high energy density. However, due to the low initial Coulombic efficiency and the capacity fading and voltage fading during cycling, its practical application is still a great challenge. Here, we report the one-step realization of layered/spinel heterostructures and Na doping by the sodium dodecyl sulfate (SDS)-assisted sol-gel method. The spinel phase provides 3D diffusion channels for Li-ions, and sodium doping changes the layered lattice constant and expands the layer spacing. Therefore, the designed Li1.15Mn0.54Ni0.13Co0.13Na0.05O2 (SDS-2) cathode possesses excellent electrochemical performance such as higher initial Coulombic efficiency and rate capacity and also alleviates voltage decay. The initial discharge-specific capacity of SDS-2 is 298.8 mAh g-1 at 0.1 C, and the discharge-specific capacity can reach 111.7 mAh g-1 at 10 C. This strategy can provide new insights into the design and synthesis of high-performance Li-rich layered oxide cathode materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.