Abstract

The rational design of high-efficiency catalysts for non-enzymatic glucose sensing is extremely important for the timely and effective monitoring of glucose content in beverages and human blood. A 3D bimetallic organic framework (Coordination Polymer of Oslo, CPO) nanorod array with oxygen vacancies was green fabricated on carbon cloth (Ni0.5Co0.5-CPO-27 NRA/CC) using dielectric barrier discharge (DBD) microplasma for the first time. Density functional theory (DFT) calculations demonstrated that the oxygen vacancy of Ni0.5Co0.5-CPO-27 can be effectively induced under DBD microplasma conditions. Based on the 3D nanorod arrays with rich oxygen vacancies and bimetallic synergistic effects, as a non-enzyme glucose sensor, the Ni0.5Co0.5-CPO-27 electrode exhibited a sensitivity of 8499.5 μA L/mmol cm−2 and 3239.2 μA L/mmol cm−2 and a limit of detection (LOD) of 0.16 μmol/L (S/N = 3). It has been successfully applied to the determination of glucose levels in real samples such as cola, green tea and human serum.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call