Abstract

Applying organic-inorganic hybrid perovskite quantum dots (PQDs) to photocatalytic nitrogen fixation is hindered long-term by the inherent instability in water and tedious preparations. Here, to realize PQD-catalyzed photocatalytic N2 reduction reaction (NRR), water-resistant PQDs are simply prepared through one-step electrospray synthesis in microseconds. During the fast electrospray, PQDs of Zn/PbO-doped methylammonium lead bromide (Zn/PbO/PC-Zn/MAPbBr3 , MA: CH3 NH3 ) are prepared and part-encapsulated by polycarbonate. The synthesis maintains good water resistance, whose restriction on charge transport is overcome skillfully. Simultaneously, substitution of Zn with Pb on water-resistant surface is also achieved, which fabricates new Zn-oxygen vacancies (Zn-OVs) with Zn/PbO-Zn/MAPbBr3 type I heterojunction. This facilitates efficient electron transfer from internal heterojunction interface of Zn/MAPbBr3 PQDs to the surface of Zn/PbO. Demonstrated by theoretical calculations, Zn-OVs promote chemisorption and polarization of N2 . In addition, s-electrons in exposed Zn become active due to changes of electron filling of Zn orbitals under OVs' co-doping. Thus, photocatalytic N2 reduction reaction catalyzed by organic-inorganic hybrid PQDs is first achieved in aqueous phase without sacrificial agents being added. This initiates possibilities for photocatalytic applications of organic-inorganic hybrid PQDs in aqueous phase.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call