Abstract
Previously we found that covalent attachment of long-chained, moderately hydrophobic polycations to surfaces of solid objects renders the latter permanently bactericidal. Herein we replaced such surface-specific, multistep immobilization techniques with a single-step, general procedure akin to common painting. Glass or polyethylene slides were briefly dipped into organic solutions of certain optimally hydrophobic N-alkyl-PEI (where PEI stands for branched 750-kDa polyethylenimine) polycations, followed by solvent evaporation. The resultant polycation-coated slides were able to kill on contact all of the encountered bacterial cells, whether the Gram-positive human pathogen Staphylococcus aureus or its Gram-negative brethren Escherichia coli. This biocidal effect was found not to be caused by N-alkyl-PEI molecules leached from the surface. Further examination of the mechanism of this bactericidal action suggested that the surface-deposited N-alkyl-PEI kills bacteria by rupturing their cellular membranes. This conclusion was further supported by studies in which the molecular weight of PEI and the hydrophobicity of the alkyl moiety were varied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.