Abstract

AbstractTextile pigment printing and dyeing is an environmentally friendly and sustainable clean production technology that has the advantages of saving water, saving energy and reducing pollution. However, the application of this technology in industry is severely limited because of the disadvantages of stiff hand feeling, poor wet rubbing fastness and other performance properties of traditional pigment‐printed fabric. To improve the pigment printing performance, a novel method of preparing hybrid pigment latex containing silicone by one‐step mini‐emulsion copolymerisation of silicone and acrylic monomers was explored in this work. Here, a comprehensive study of the effect of the ratio of silicone and acrylic, and the silicone component of alkoxysilane and cyclic siloxanes, on the properties of hybrid latex films and pigment‐printed polyester fibres, was conducted. It was found that, with an increasing amount of silicone, the hybrid pigment latex films gradually enhanced the water resistance, flexibility and thermal stability properties. Those water repellencies and smooth feeling properties were achieved by incorporating the hydrophobicity and the flexibility of the copolymer chains of silicone. The waterborne self‐adhesive hybrid pigment containing silicone can be directly applied for pigment printing of polyester fabric. Compared with the control printing system (without silicone), it not only exhibited an equivalent colour strength, but also improved the colour fastness and hand feel. Based on these results, this approach may provide insights into the rational design of waterborne self‐adhesive textile hybrid pigments for high‐quality printing performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call