Abstract
Summary Local quasi-likelihood estimation is a useful extension of local least squares methods, but its computational cost and algorithmic convergence problems make the procedure less appealing, particularly when it is iteratively used in methods such as the back-fitting algorithm, cross-validation and bootstrapping. A one-step local quasi-likelihood estimator is introduced to overcome the computational drawbacks of the local quasi-likelihood method. We demonstrate that as long as the initial estimators are reasonably good, the one-step estimator has the same asymptotic behaviour as the local quasi-likelihood method. Our simulation shows that the one-step estimator performs at least as well as the local quasi-likelihood method for a wide range of choices of bandwidths. A data-driven bandwidth selector is proposed for the one-step estimator based on the pre-asymptotic substitution method of Fan and Gijbels. It is then demonstrated that the data-driven one-step local quasi-likelihood estimator performs as well as the maximum local quasi-likelihood estimator by using the ideal optimal bandwidth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Royal Statistical Society Series B: Statistical Methodology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.