Abstract

An improved one-step Leapfrog hybrid implicit-explicit finite-Difference Time-Domain (HIE-FDTD) method is developed for simulating complex plasmonic structures that comprise dispersive materials over an ultra-wide optical frequency range. The dispersive media is described by a partial fraction (PF) dispersion model by using the vector fitting technique and further implemented into the Leapfrog HIE-FDTD scheme via an auxiliary difference equation (ADE) formulation. The performance of the proposed method is evaluated in optical response of a multi-functional plasmonic structure which can act as a dynamically tunable band-stop filter and refractive index sensor. Simulation results demonstrate good numerical accuracy and high computational efficiency and may find some potential applications in sensing, detecting and optical communications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call