Abstract

Objective. Sparse-view dual-energy spectral computed tomography (DECT) imaging is a challenging inverse problem. Due to the incompleteness of the collected data, the presence of streak artifacts can result in the degradation of reconstructed spectral images. The subsequent material decomposition task in DECT can further lead to the amplification of artifacts and noise. Approach. To address this problem, we propose a novel one-step inverse generation network (OIGN) for sparse-view dual-energy CT imaging, which can achieve simultaneous imaging of spectral images and materials. The entire OIGN consists of five sub-networks that form four modules, including the pre-reconstruction module, the pre-decomposition module, and the following residual filtering module and residual decomposition module. The residual feedback mechanism is introduced to synchronize the optimization of spectral CT images and materials. Main results. Numerical simulation experiments show that the OIGN has better performance on both reconstruction and material decomposition than other state-of-the-art spectral CT imaging algorithms. OIGN also demonstrates high imaging efficiency by completing two high-quality imaging tasks in just 50 seconds. Additionally, anti-noise testing is conducted to evaluate the robustness of OIGN. Significance. These findings have great potential in high-quality multi-task spectral CT imaging in clinical diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.