Abstract
The methylotrophic yeast species Komagataella phaffii (synonym: Pichia pastoris) is widely used as a host for recombinant protein production. Although several genetic engineering techniques are being employed on K. phaffii, advanced methods such as in vivo DNA assembly in this yeast species are required for synthetic biology applications. In this study, we established a technique for accomplishing one-step in vivo assembly of multiple DNA fragments and genomic integration in K. phaffii. To concurrently achieve an accurate multiple DNA assembly and a high-efficient integration into the target genomic locus in vivo, a K. phaffii strain, lacking a non-homologous end joining-related protein, DNA ligase IV (Dnl4p), that has been reported to improve gene targeting efficiency by homologous recombination, was used. Using green fluorescent protein along with the lycopene biosynthesis, we showed that our method that included a Dnl4p-defective strain permits direct and easy engineering of K. phaffii strains.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: ACS Synthetic Biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.