Abstract

We demonstrate here in situ synthesis of bulk yield W18O49@carbon coaxial nanocables based on an easily controlled chemical vapor deposition process at relatively low temperature (760 °C) using metallic tungsten powder and ethylene (C2H4) as the raw materials. Transmission electron microscope (TEM), energy dispersive x-ray (EDX), and x-ray diffraction (XRD) analyses indicate that the resultant nanostructures are composed of single-crystalline W18O49 nanowires, coaxially covered with amorphous carbon walls. A vapor–solid (VS) mechanism is proposed to interpret the formation of the nanocables. The effect of carbon sources on the nanocable growth was investigated. The results revealed that the introduction of carbon species not only causes the production of W18O49@C nanocable structures, but also obviously modulates growth behaviors and core/shell diameter ratio of the nanocables. The obtained nanocables may find great applications in catalyst systems and optical and electronic nanodevices because of their enhanced surface properties, as well as in high chemical stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.