Abstract

A novel method for chiral identification of glutamine enantiomers based on chiral carbon quantum dots (cCQDs) fluorescent probes. cCQDs were prepared using a one-step hydrothermal method with L-tryptophan as the carbon source and chiral source, producing spherical nanoparticles exhibiting a blue colour luminescence. The fluorescence intensity (F) of cCQDs was enhanced or quenched following the addition of chiral enantiomeric glutamine (L/D-Gln), and therefore cCQDs, as a fluorescence probe, could be used for enantioselective sensing of the L/D-Gln. The fluorescence enhancement value (∆FE ) exhibited good linearity with L-Gln concentration in the range 0.23-10.00 mM, and the limit of detection was 0.14 mM. The fluorescence quenching value (∆FQ ) showed a good linear relationship with D-Gln concentration in the range 0.29-10.00 mM, and the detection limit was 0.18 mM. The mechanism of fluorescence enhancement/quenching was explored by molecular modelling and the type of quenching. The method was applied to the determination of L-Gln content in real samples, and the recovery rate was satisfactory. This study provided a novel approach for the synthesis of cCQDs and the recognition of amino acid enantiomers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call