Abstract
To screen out suitable electrode materials and overcome the shortcomings of the existed electrode materials for the application in dye-sensitized solar cells and supercapacitors, NiS2/reduced graphene oxide (NiS2/rGO) composite material was prepared by a simple one-step hydrothermal method in this paper and applied in the field of both dye-sensitized solar cells and supercapacitors as electrode material. In an electrolyte of 6 M KOH, the NiS2/rGO composite material with bilayer capacitance characteristics exhibited a high specific capacitance of 259.20 F g−1 at the current density of 0.6 A g−1, which was significantly higher than that of rGO (188.94 F g−1). Moreover, at a current density of 2 A g−1, the NiS2/rGO composite material had 92.85% capacitance retention after 2000 cycles. When applied as counter electrode material for the dye-sensitized solar cells, the NiS2/rGO composite material counter electrode exhibited a satisfactory photoelectric conversion efficiency (η) of 3.16% under standard simulated sunlight (AM 1.5 G), which was significantly higher than that of single rGO counter electrode (improved by 90.40%). The NiS2/rGO composite electrode material prepared by a simple one-step hydrothermal method is a potential bi-functional composite electrode materials for both dye-sensitized solar cells and supercapacitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.