Abstract

2H-1T' MoTe2 van der Waals heterostructures (vdWHs) have promising applications in optoelectronics due to a seamlessly homogeneous semiconductor-metal coupled interface. However, the existing methods to fabricate such vdWHs involved complicated steps that may deteriorate the interfacial coupling and are also lacking precise thickness control capability. Here, a one-step growth method was developed to controllably grow bilayer 2H-1T' MoTe2 vdWHs in the small growth window overlapped for both phases. Atomic-resolution low-voltage transmission electron microscopy shows the distinct moiré patterns in the bilayer vdWHs, revealing the epitaxial nature of the top 2H phase with the lattice parameters regulated by the underneath 1T' phase. Such epitaxially stacked bilayer vdWHs modulate the interlayer coupling by resonating their vibration modes, as unveiled by the angle-resolved polarized Raman spectroscopy and first-principles calculations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.