Abstract

We propose an efficient scheme to generate multiqubit Greenberger—Horne—Zeilinger (GHZ) states by one-step quantum operation in a driven circuit quantum electrodynamics (QED) system. Our proposal is based on a unitary evolution exp[−iλS2x], with Sx being the collective spin operator in x direction and λ a controllable parameter, induced by driving the resonator. The quantum operation avoids resonator-field decay and may achieve the GHZ states with ideal success probability. The feasibility with the experimentally-demonstrated circuit QED system is also discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.