Abstract

AbstractMetallurgical production traditionally involves three steps: extracting metals from ores, mixing them into alloys by liquid processing and thermomechanical processing to achieve the desired microstructures1,2. This sequential approach, practised since the Bronze Age, reaches its limit today because of the urgent demand for a sustainable economy2–5: almost 10% of all greenhouse gas emissions are because of the use of fossil reductants and high-temperature metallurgical processing. Here we present a H2-based redox synthesis and compaction approach that reforms traditional alloy-making by merging metal extraction, alloying and thermomechanical processing into one single solid-state operation. We propose a thermodynamically informed guideline and a general kinetic conception to dissolve the classical boundaries between extractive and physical metallurgy, unlocking tremendous sustainable bulk alloy design opportunities. We exemplify this approach for the case of Fe–Ni invar bulk alloys6,7, one of the most appealing ferrous materials but the dirtiest to produce: invar shows uniquely low thermal expansion6,8,9, enabling key applications spanning from precision instruments to cryogenic components10–13. Yet, it is notoriously eco-unfriendly, with Ni causing more than 10 times higher CO2 emission than Fe per kilogram production2,14, qualifying this alloy class as a perfect demonstrator case. Our sustainable method turns oxides directly into green alloys in bulk forms, with application-worthy properties, all obtained at temperatures far below the bulk melting point, while maintaining a zero CO2 footprint.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.