Abstract

Currently, more and more tailor-welded blanks (TWBs) are used in the automobile industry. It is very important to locate the weld line and predict its movement during the forming process. The initial weld line can be predicted by one-step finite-element analysis according to the desired weld line in the final workpiece. Meanwhile, weld line movement during the deformation process can be evaluated in advance. In this paper, the procedures of finite-element analysis of one-step FEM with TWBs are established. The contact between tool and blank and the effect of restraining forces under the blankholder due to drawbead and blankholder pressure are considered as well. Forming limit diagram (FLD) is used to show not only the tendency of reduction in thickness and fracture but also of increase in thickness and wrinkle. Hydraulic controlled pads used to clamp the weld line during the deep drawing process are simplified as static external force to eliminate the movement of the weld line. In order to speed up and ensure the convergence of Newton-Raphson iterations, energy-based 3D mesh mapping algorithm is introduced to obtain the initial solution. The above-mentioned methods have been implemented in the authors’ in-house one-step FEM code InverStamp. A rectangular cup drawing case demonstrates that this approach can be easily implemented to evaluate weld line movement and develop initial blank in sheet metal stamping with tailor-welded blanks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.