Abstract

We have used a bias-assisted microwave plasma chemical vapor deposition system to synthesize carbon nanotubes presenting graphitic nanoflakes, named coral-like carbon nanotubes, and well-aligned carbon nanotubes on carbon cloth substrates. Applying an external bias of -100 V led to the growth of well-aligned carbon nanotubes. In the absence of an external bias, the coral-like nanotubes presenting graphite nanoflakes were formed. The specific surface areas of the well-aligned and coral-like carbon nanotubes electrodes were 90.31 and 143.69 m2/g, respectively. In terms of energy storage, we estimated the capacitance of the coral-like carbon nanotube electrode to be ca. 194 F/g in an electrolyte of 1 M H2SO4. This value is almost double that of the well-aligned carbon nanotubes electrode (104 F/g), presumably because the presence of the carbon nanoflakes had a positive influence on the migration and adsorption of ions within the electrode. The fitting results indicated that the coral-like carbon nanotubes electrode behaved as a traditional electrochemical capacitor. Durability tests revealed that the coral-like carbon nanotube electrode was reliable, with a decay of 9% in capacitance over 1000 cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call