Abstract
Reduced graphene oxide (RGO) was successfully decorated with homogeneous highly dispersed palladium nanoparticles (PdNPs) by a novel single-step hydrothermal-assisted formic acid reduction reaction without the use of any surfactants. The structure, surface morphology, and elemental composition of the as-prepared PdNP-RGO electrocatalyst were extensively characterized. The PdNP-RGO electrocatalyst demonstrated outstanding electrocatalytic activity (8.65 mA/cm2) toward the methanol oxidation reaction (MOR) in an acidic medium that is 1.4 times higher than PdNP-decorated Vulcan XC72 (6.2 mA/cm2) and also comparable with that of Pd-based electrocatalysts in alkaline media from the previous reports. Furthermore, the as-prepared PdNP-RGO electrocatalyst also shows remarkable stability performance for the MOR in an acidic medium and thus offer new insights into the processing method of an outstanding electrocatalyst at the anode electrode in the direct methanol fuel cell with reasonable cost, clean and facile synthesis approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.