Abstract
Enzymatic bioelectrochemistry represents the marriage of electrochemistry and enzymatic biocatalysis, and has led to important applications for biosensors, biofuel cells, and bioelectrocatalysis. Enzyme immobilization is the basis of enzymatic bioelectrochemistry, as immobilization itself determines the enzyme/material interface and thus the electrochemical performance. Amongst the range of methods of enzyme immobilization, one-step electrochemical approaches feature rapid immobilization and good control over the processes, enabling partial or total use of the electrode surface. In this mini-review, we first briefly introduce the operating principles of bioelectrochemical applications based on enzyme modified electrodes. We then overview recent progress in utilizing conductive polymers, redox-active modified polymers, sol–gel silica and electrochemically assistant adsorption for enzyme immobilization via one-step electrochemical approaches. The use of conductive polymers for in situ enzyme immobilization is our major focus. Perspectives for future work are also described.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.