Abstract
Mechanically robust and electrically conductive hydrogels hold significant promise for flexible device applications. However, conventional fabrication methods such as casting or injection molding meet challenges in delivering hydrogel objects with complex geometric structures and multicustomized functionalities. Herein, a 3D printable hydrogel with excellent mechanical properties and electrical conductivity is implemented via a facile one-step preparation strategy. With vat polymerization 3D printing technology, the hydrogel can be solidified based on a hybrid double-network mechanism involving in situ chemical and physical dual cross-linking. The hydrogel consists of two chemical networks including covalently cross-linked poly(acrylamide-co-acrylic acid) and chitosan, and zirconium ions are induced to form physically cross-linked metal-coordination bonds across both chemical networks. The 3D-printed hydrogel exhibits multiple excellent functionalities including enhanced mechanical properties (680% stretchability, 15.1 MJ/m3 toughness, and 7.30 MPa tensile strength), rapid printing speed (0.7-3 s/100 μm), high transparency (91%), favorable ionic conductivity (0.75 S/m), large strain gauge factor (≥7), and fast solvent transfer induced phase separation (in ∼3 s), which enable the development of high-performance flexible wearable sensors, shape memory actuators, and soft pneumatic robotics. The 3D printable multifunctional hydrogel provides a novel path for customizing next-generation intelligent soft devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.