Abstract

Excessive intake of melamine (MEL) can be harmful to human health, and it is important to establish a rapid and accurate MEL detection method. As the electrochemical activity of MEL is very low, ferrocenylglutathione (Fc-ECG) was used as an electron transfer mediator to assist with the detection of MEL using screen-printed carbon electrode (SPCE). This modified electrode (MEL/Fc-ECG/SPCE) was prepared by stepwise drop-casting and was fully characterized. Results showed that MEL significantly enhanced signal of Fc-ECG/SPCE sensor due to the three p-π conjugated double bonds that facilitated electron transfer. Under optimal conditions, the sensor exhibits two linearities in the range of 0.20–2.00 μM and 8.00–800 μM, with a sensitivity of 15.03 μA·μM−1·cm−2. The selectivity, stability, and reproducibility were investigated and successfully used to detect MEL in raw milk and confirms safety verification of foods. Moreover, a portable testing platform was designed for MEL detection based on a CH32 chip.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call