Abstract

Cellulose paper has strong potential as an analytical platform owing to its unique characteristics. In the present study, we investigated a procedure for functionalizing the surface of cellulose paper by dip-coating a mixture of a functional polymer and a perfluoroalkylated surfactant (surfactant 1). The functional polymer comprised a mixture of methyl methacrylate and poly(ethylene glycol) methacrylate monomers. The monomer ratio in the functional polymer affected the hydrophilicity and water absorbance of the cellulose paper after dip-coating. Furthermore, the presence of surfactant 1 during dip-coating promoted the surface segregation of poly(ethylene glycol) (PEG) moieties in the polymer, which enhanced the hydrophilicity, prevented nonspecific protein adsorption, and maintained the water absorbance of the dip-coated cellulose paper. Dip-coating with another functional polymer containing biotin groups produced a cellulose paper with a biotin-decorated surface in a one-step procedure. The displayed biotin groups immobilized avidin on the surface, and the PEG moieties in the polymer prevented nonspecific protein adsorption. We then immobilized a thrombin-binding DNA aptamer on the avidin-immobilized cellulose paper to prepare a paper-based analytical device. It is possible to visualize thrombin in model solutions and serum using the paper-based analytical device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.