Abstract
The rapid destruction of chemical threats, such as phosphate-based nerve agents, is of considerable current interest. The hydrolysis of the nerve-agent simulant methylparaoxon, as catalyzed by UiO-66 and UiO-67, was examined as a function of pH. Surprisingly, even though typical phosphate–ester hydrolysis mechanisms entail nucleophilic attack of the simulant by aqueous hydroxide, the rate of hydrolysis accelerates as the solution pH is lowered. The unexpected behavior is attributed to a pH-dependent composition change followed by ligand substitution at the Zr6-based node.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.