Abstract

The capture of particles by air microbubbles in dissolved air flotation has been analysed using a one-step (holistic) approach, which numerically solved the motion equation (with the inclusion of microhydrodynamic resistance functions and surface forces) for both the bubble-particle collision and attachment interactions. Model predictions with the inclusion of non-DLVO attractive surface force agreed with the experimental trajectories of latex particles. The non-DLVO attractive force reduced the force barrier between non-attaching particles and bubbles, and significantly increased the attractive net force between attaching particles and air bubbles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.