Abstract

Logo is an important asset as it is designed to express identity or character of the company or organization that owns the logo. The advent of deep learning methods and proliferated of logo images sample dataset in the past decade has made automated logo detection from digital images or video an interesting computer vision problem with wide potential applications. This paper presents a novel one-stage logo detector framework in which the backbone of the proposed logo detector is a deep learning model which is trained supervisedly using gradient descent training algorithm and the target logo classes as input dataset. The experiment results showed that AdaBoost Resnet50 (0.58 MAP) as the logo detector backbone outperforms Resnet50 (0.56 MAP), VGG19 (0.32 MAP), and AdaBoost VGG19 (0.56 MAP).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.