Abstract

The use of face masks by the general population during viral outbreaks such as the COVID-19 pandemic, although at times controversial, has been effective in slowing down the spread of the virus. The extent to which face masks mitigate the transmission is highly dependent on how well the mask fits each individual. The fit of simple cloth masks on the face, as well as the resulting perimeter leakage and face mask efficacy, are expected to be highly dependent on the type of mask and facial topology. However, this effect has, to date, not been adequately examined and quantified. Here, we propose a framework to study the efficacy of different mask designs based on a quasi-static mechanical model of the deployment of face masks onto a wide range of faces. To illustrate the capabilities of the proposed framework, we explore a simple rectangular cloth mask on a large virtual population of subjects generated from a 3D morphable face model. The effect of weight, age, gender, and height on the mask fit is studied. The Centers for Disease Control and Prevention (CDC) recommended homemade cloth mask design was used as a basis for comparison and was found not to be the most effective design for all subjects. We highlight the importance of designing masks accounting for the widely varying population of faces. Metrics based on aerodynamic principles were used to determine that thin, feminine, and young faces were shown to benefit from mask sizes smaller than that recommended by the CDC. Besides mask size, side-edge tuck-in, or pleating, of the masks as a design parameter was also studied and found to have the potential to cause a larger localized gap opening.

Highlights

  • During the COVID-19 pandemic, wearing face masks is the new status quo, and it has become apparent that the fit of the mask is important

  • This study aims to provide a framework to develop better mask designs and provide motivation as to why mask fit and mask design should be studied at an individual level

  • The results suggest that the addition of a tuck-in mechanism to the lower edge of the medium size mask is a simple modification that would make them more effective for feminine and thin faces

Read more

Summary

Introduction

During the COVID-19 pandemic, wearing face masks is the new status quo, and it has become apparent that the fit of the mask is important. In the early stages of the pandemic, face masks were primarily used as a barrier to small droplets that could carry the virus. Scientists have urged public-health authorities to acknowledge the potential for airborne transmission of the novel SARS-CoV-2 coronavirus [1].

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call