Abstract
Even in the aggregate, genomic data can reveal sensitive information about individuals. We present a new model-based measure, PrivMAF, that provides provable privacy guarantees for aggregate data (namely minor allele frequencies) obtained from genomic studies. Unlike many previous measures that have been designed to measure the total privacy lost by all participants in a study, PrivMAF gives an individual privacy measure for each participant in the study, not just an average measure. These individual measures can then be combined to measure the worst case privacy loss in the study. Our measure also allows us to quantify the privacy gains achieved by perturbing the data, either by adding noise or binning. Our findings demonstrate that both perturbation approaches offer significant privacy gains. Moreover, we see that these privacy gains can be achieved while minimizing perturbation (and thus maximizing the utility) relative to stricter notions of privacy, such as differential privacy. We test PrivMAF using genotype data from the Wellcome Trust Case Control Consortium, providing a more nuanced understanding of the privacy risks involved in an actual genome-wide association studies. Interestingly, our analysis demonstrates that the privacy implications of releasing MAFs from a study can differ greatly from individual to individual. An implementation of our method is available at http://privmaf.csail.mit.edu.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings. IEEE Symposium on Security and Privacy. Workshops
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.