Abstract
AbstractIn the literature on optimal stopping, the problem of maximizing the expected discounted reward over all stopping times has been explicitly solved for some special reward functions (including (x+)ν, (ex − K)+, (K − e− x)+, x ∈ ℝ, ν ∈ (0, ∞), and K > 0) under general random walks in discrete time and Lévy processes in continuous time (subject to mild integrability conditions). All such reward functions are continuous, increasing, and logconcave while the corresponding optimal stopping times are of threshold type (i.e. the solutions are one-sided). In this paper we show that all optimal stopping problems with increasing, logconcave, and right-continuous reward functions admit one-sided solutions for general random walks and Lévy processes, thereby generalizing the aforementioned results. We also investigate in detail the principle of smooth fit for Lévy processes when the reward function is increasing and logconcave.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.