Abstract

We recall that $w\in C_{p}^+$ if there exist $\varepsilon >0$ and $C>0$ such that for any $a< b< c$ with $c-b< b-a$ and any measurable set $E\subset (a,b)$, the following holds \[ \int_{E}w\leq C\left(\frac{|E|}{(c-b)}\right)^{\varepsilon}\int_{\mathbb{R}}\left(M^+\chi_{(a,c)}\right)^{p}w<\infty. \]This condition was introduced by Riveros and de la Torre [33] as a one-sided counterpart of the $C_{p}$ condition studied first by Muckenhoupt and Sawyer [30, 34]. In this paper we show that given $1< p< q<\infty$ if $w\in C_{q}^+$ then \[ \|M^+f\|_{L^{p}(w)}\lesssim\|M^{\sharp,+}f\|_{L^{p}(w)} \]and conversely if such an inequality holds, then $w\in C_{p}^+$. This result is the one-sided counterpart of Yabuta's main result in [37]. Combining this estimate with known pointwise estimates for $M^{\sharp,+}$ in the literature we recover and extend the result for maximal one-sided singular integrals due to Riveros and de la Torre [33] obtaining counterparts a number of operators.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call