Abstract

We define a new property called one-sided almost specification, which lies between the properties of specification and almost specification, and prove that it guarantees intrinsic ergodicity (i.e. uniqueness of the measure of maximal entropy) if the corresponding mistake function $g$ is bounded. We also show that uniqueness may fail for unbounded $g$ such as $\log \log n$. Our results have consequences for almost specification: we prove that almost specification with $g\equiv 1$ implies one-sided almost specification (with $g\equiv 1$) and hence uniqueness. On the other hand, the second author showed recently that almost specification with $g\equiv 4$ does not imply uniqueness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.