Abstract

We analyze a task in which classical and quantum messages are simultaneously communicated via a noisy quantum channel, assisted with a limited amount of shared entanglement. We derive direct and converse bounds for the one-shot capacity region, represented by the smooth conditional entropies and the error tolerance. The proof is based on the randomized partial decoupling theorem, which is a generalization of the decoupling theorem. The two bounds match in the asymptotic limit of infinitely many uses of a memoryless channel and coincide with the previous result obtained by Hsieh and Wilde. Direct and converse bounds for various communication tasks are obtained as corollaries, both for the one-shot and asymptotic scenarios.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.