Abstract

Nonadiabatic quantum dynamics is important for understanding light-harvesting processes, but its propagation with traditional methods can be rather expensive. Here we present a one-shot trajectory learning approach that allows us to directly make an ultrafast prediction of the entire trajectory of the reduced density matrix for a new set of such simulation parameters as temperature and reorganization energy. The whole 10-ps-long propagation takes 70 ms as we demonstrate on the comparatively large quantum system, the Fenna-Matthews-Olsen (FMO) complex. Our approach also significantly reduces time and memory requirements for training.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.