Abstract
A fundamental approach for the characterization and quantification of all kinds of resources is to study the conversion between different resource objects under certain constraints. Here we analyze, from a resource-nonspecific standpoint, the optimal efficiency of resource formation and distillation tasks with only a single copy of the given quantum state, thereby establishing a unified framework of one-shot quantum resource manipulation. We find general bounds on the optimal rates characterized by resource measures based on the smooth max- or min-relative entropies and hypothesis testing relative entropy, as well as the free robustness measure, providing them with general operational meanings in terms of optimal state conversion. Our results encompass a wide class of resource theories via the theory-dependent coefficients we introduce, and the discussions are solidified by important examples, such as entanglement, coherence, superposition, magic states, asymmetry, and thermal nonequilibrium.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.