Abstract
The one-shot classical capacity of a quantum channel quantifies the amount of classical information that can be transmitted through a single use of the channel such that the error probability is below a certain threshold. In this work, we show that this capacity is well approximated by a relative-entropy-type measure defined via hypothesis testing. Combined with a quantum version of Stein's lemma, our results give a conceptually simple proof of the well-known Holevo-Schumacher-Westmoreland theorem for the capacity of memoryless channels. More generally, we obtain tight capacity formulas for arbitrary (not necessarily memoryless) channels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.