Abstract

A series of enantioenriched (hetero)aromatic secondary allylic alcohols has been synthesized through deracemization of the corresponding racemic mixtures combining a non-selective chemoenzymatic oxidation (laccase from Trametes versicolor and oxy-radical TEMPO) and a stereoselective biocatalyzed reduction (lyophilized cells of E. coli overexpressing an alcohol dehydrogenase, ADH). Both steps were performed in aqueous medium under very mild reaction conditions. After optimization, a sequential one-pot two-step protocol was set up, obtaining the corresponding chiral alcohols in moderate to high conversions (48–95%) and enantiomeric excess (65->99% ee). Depending on the ADH stereopreference, both antipodes from these valuable chiral synthons could be prepared, even at preparative scale (119−178 mg), in a straightforward manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call