Abstract

We describe a one-pot strategy to access 3-carboxyl- and 3-ketopyridines from readily available alkynes and propargylamine via a hydroamination process. This one-pot protocol uses alkynes as starting materials, has a broad substrate scope, and operates in aqueous media and open-air conditions. A series of aryl- and alkyl-substituted pyridines were synthesized. This green methodology can be scaled to laboratory size and was used for the synthesis of the natural product core, 4-aza-fluorenone. Density-functional theory and control mechanistic studies support a domino hydroamination/pericyclic reaction, which includes the formation of the enaminone intermediate and its transformation through an aza-Claisen rearrangement to the desired pyridine product.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.