Abstract

Double modifications of TiO2 by doping with WO3 and by dispersing on a SiO2 support were made by the one-pot sol-gel method. Doping with W shifts the TiO2 band gap energy from 3.2 eV to around 3.06 eV. The surface area of the supported W-TiO2/SiO2 material was significantly increased, by approximately 3 times, in comparison to the bare TiO2. The photocatalytic activities of the catalysts were evaluated in the degradation reaction of p-nitrophenol in aqueous solution and basic medium. After 240 min of photodegradation, more than approximately 99% p-nitrophenol could be mineralized with the most active W-TiO2/SiO2 catalyst. Under UV irradiation, p-nitrophenol was initially photodegraded into hydroquinone and benzosemiquinone intermediates, which were further degraded into smaller fragments such as organic carboxylic acids and finally completely mineralized. A proposed photoreaction mechanism was presented based on the key roles of the surface hydroxyl species and superoxide radicals such as O2- and ⋅OH, together with W6+/W5+ couples and e-/h+ pairs in the catalysts in the p-nitrophenol photodegradation. The one-pot sol-gel synthesis method was proven to be effective to obtain W-TiO2/SiO2 catalyst with large surface area and high photocatalytic activity, and it can be also used for the preparation of other heterogeneous catalysts.

Highlights

  • Industrial development around the world has greatly increased the volume of contaminated residual water [1,2,3]

  • The one-pot sol-gel synthesis method reported was proven to be effective to obtain a W-TiO2/SiO2 catalyst with a large surface area and high photocatalytic activity, and it can be used for the preparation of other heterogeneous catalysts

  • The X-ray photoelectron spectroscopy (XPS) and UV-vis spectra show that after W doping, a slight displacement of the electromagnetic spectrum towards the visible region was observed for the W-TiO2 catalyst

Read more

Summary

Introduction

Industrial development around the world has greatly increased the volume of contaminated residual water [1,2,3]. Nanotechnology for eliminating or reducing environmental pollutants has shown significance in the last decades, for water contaminant control [4]. Heterogeneous photocatalysis represents a part of the solution for addressing environmental concerns due to its significant benefits compared to traditional decontamination methods, allowing the complete mineralization of organic contaminants without producing dangerous intermediate residuals [1, 5]. Photocatalysis involves the use of solar or ultraviolet light and a semiconductor such as TiO2 [3]. TiO2 only absorbs light in the UV region due to its relatively large band gap energy (~3.2 eV), which is the main drawback for its application, since only 4~5% of the solar spectrum falls within this range [6]. Doping TiO2 with transition metal oxides is another effective way to overcome this problem and improve its photoactivity [9, 10]

Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.