Abstract

S-Substituted-l-cysteine sulfoxides are valuable compounds that are contained in plants. Particularly, (+)-alliin and its degraded products have gained significant attention because of their human health benefits. However, (+)-alliin production has been limited to extraction from plants and chemical synthesis; both methods have drawbacks in terms of stability and safety. Here, we proposed the enzymatic cascade reaction for synthesizing (+)-alliin from readily available substrates. To achieve a one-pot (+)-alliin production, we constructed Escherichia coli coexpressing the genes encoding tryptophan synthase from Aeromonas hydrophila ssp. hydrophila NBRC 3820 and l-isoleucine hydroxylase from Bacillus thuringiensis 2e2 for the biocatalyst. Deletion of tryptophanase gene in E. coli increased the yield about 2-fold. Under optimized conditions, (+)-alliin accumulation reached 110 mM, which is the highest productivity thus far. Moreover, natural and unnatural S-substituted-l-cysteine sulfoxides were synthesized by applying various thiols to the cascade reaction. These results indicate that the developed bioprocess would enable the supply of diverse S-substituted-l-cysteine sulfoxides.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.