Abstract

Radiobiological damage can be caused by radiation, and easy preparation of long-term stable radioprotectors is helpful for timely and efficient response to radiation emergencies. This study develops an ultra-stable radioprotector for rapid nuclear emergency with a simple preparing method. First of all, polyvinylpyrrolidone-modified MnO2 nanoparticles (PVP-MnO2 NPs) are obtained by one-pot synthesis with ultra-stability (remaining for at least three years) and multiple free radical scavenging activities. In the synthesis process, PVP acts as a reducing agent, a surfactant (soft template), and a steric stabilizer. PVP-MnO2 NPs can improve the survival rates of irradiated cells by effectively scavenging free radicals and protecting DNA from radiation damage. Besides, PVP-MnO2 NPs can also prevent peripheral blood cell and organ damage induced by radiation, and improve the survival rate of irradiated mice. Finally, PVP-MnO2 NPs are mainly metabolized by liver and kidney in mice, and basically excreted 72 h after administration. These results indicate that PVP-MnO2 NPs exhibit good biosafety and radioprotection activity, which is significant for the development of radioprotection agents.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call