Abstract

In this study, a facile and extensible one pot approach was utilized to synthesize ionic liquid inside a porous metal organic framework (UiO-66). Different characterization techniques were used to confirm the successful synthesis of UiO-66@IL composite. The MMMs were characterized and tested for CO2 separation from CH4 or N2 at ambient and elevated temperatures. SEM images exhibited well dispersion of the filler particles with no notable defect even at high loadings. Single and mixed gas permeation results indicated significant performance (CO2 permeability: 143 Barrer and CO2/CH4, CO2/N2 selectivity: 28.32, 61.11 respectively) by enhancing the permeability of CO2 by 74% and selectivity to 31% and 26% for CO2/CH4 and CO2/N2 compared with neat Pebax®1657 membrane.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.