Abstract
Herein, WO3 nanorods have been prepared by simple hydrothermal method with the assistance of Na2SO4 as a structure-directing agent (SDA). The impact of SDA concentrations on the structural, morphological, optical, and photocatalytic performance of WO3 nanoparticles has been investigated. From XRD pattern, the phase transformation (monoclinic to hexagonal) was observed after adding SDA into WO3 matrix. Randomly oriented hexagonal WO3 nanorods were developed by the influence of SDA, which has been observed with FE-SEM analysis. The chemical composition and electronic structure of hexagonal WO3 nanorods photocatalyst were confirmed by X-ray photoelectron spectroscopy. The blue shift absorbance was recorded in UV–Vis spectrum. In the PL spectrum, the surface oxygen vacancy or defects were obtained at a wavelength of 520 and 552 nm. Also, the influence of defects in the WO3 nanorods facilitates to improve the photocatalytic dye degradation performance. The hexagonal WO3 nanorods prepared at 0.05 m of SDA exhibit maximum degradation efficiency of 86% under visible light exposure. Furthermore, the specific catalyst showed an excellent stability and reusability up to four consecutive cycles of photocatalytic dye degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Materials Science: Materials in Electronics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.