Abstract

Four organic small-molecule hole transport materials (D41, D42, D43 and D44) of tetraarylpyrrolo[3,2-b]pyrroles were prepared. They can be used without doping in the manufacture of the inverted planar perovskite solar cells. Tetraarylpyrrolo[3,2-b]pyrroles are accessible for one-pot synthesis. D42, D43 and D44 possess acceptor-π-donor-π-acceptor structure, on which the aryl bearing substitutes of cyan, fluorine and trifluoromethyl, respectively. Instead, the aryl moiety of D41 is in presence of methyl with a donor-π-donor-π-donor structure. The different substitutes significantly affected their molecular surface charge distribution and thin-film morphology, attributing to the electron-rich properties of fused pyrrole ring. The size of perovskite crystalline growth particles is affected by different molecular structures, and the electron-withdrawing cyan group of D42 is most conducive to the formation of large perovskite grains. The D42 fabricated devices with power conversion efficiency of 17.3% and retained 55% of the initial photoelectric conversion efficiency after 22 days in dark condition. The pyrrolo[3,2-b]pyrrole is efficient electron-donating moiety for hole transporting materials to form good substrate in producing perovskite thin film.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.