Abstract
The effect of the support on the properties of copper catalysts supported on γ-Al2O3, SiO2, and TiO2–SiO2 with a ~5 wt % Cu content was studied in the one-pot synthesis of N-heptyl-p-toluidine from p-nitrotoluene and n-heptanal. The catalysts were characterized by elemental analysis, X-ray diffraction analysis, transmission electron microscopy, temperature-programmed reduction, and low-temperature nitrogen adsorption. The reaction was carried out in a flow reactor with the use of molecular hydrogen as a reducing agent. It was established that the nature of the support exerts a profound effect on the yield of the target secondary amine; in this case, 5%Cu/Al2O3 was found the most active catalyst. A combination of high catalyst activity in the hydrogenation of a nitro group to an amino group with the presence of acid sites, which facilitate imine formation as a result of the interaction of n-heptanal with p-toluidine, on the catalyst surface is necessary for reaching the greatest yield of N-heptyl-p-toluidine. The study of reaction mechanism on the 5%Cu/Al2O3 catalyst showed that p-nitrotoluene inhibits the hydrogenation of n-heptanal, and aldehyde hydrogenation into alcohol begins only after the conversion of the major portion of p-nitrotoluene as a result of the selective adsorption of the nitroarene under the conditions of the simultaneous presence of p-nitrotoluene and n-heptanal in the reaction mixture.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.