Abstract

In this work, we report a silica-supported ultrafine Ni catalyst for the selective hydrogenation of benzophenone. This material was developed by a facile one-pot co-assembly syntheses strategy, using Ni(II) chelated alginate hydrogel as metal precursor and sacrificial template. Due to the highly active and uniformly dispersed Ni nanoparticles (NPs), 99.8% of benzophenone conversion was achieved. Remarkably, it also reached a 97.7% of selectivity for benzhydrol during benzophenone hydrogenation. Temperature-programmed desorption of ammonia (NH3-TPD) and Density Functional Theory (DFT) results reveal that the in-situ generated sodium carbonate (Na2CO3) derived from sodium alginate is essential in tuning the selectivity of benzhydrol: the existence of Na2CO3 reduces the surface acidity of catalyst and promotes the desorption of intermediate benzhydrol, preventing its further hydrogenolysis on the surface acidic sites of catalyst. Moreover, the supported Ni catalyst shows no significant loss of its activity during 20 times of recycling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.