Abstract

ABSTRACTAerogels are quasi-stable, low-density, three-dimensional assemblies of nanoparticles, but they are commonly associated with poor mechanical properties. The most successful efforts to improve their mechanical properties involve cross-linking of the skeletal nanoparticles with polymers. However, post gelation cross-linking is time-consuming. Hence, it is reasonable to seek robust all-polymer aerogels among polymers known for their high mechanical strength. As a result, here we report the facile one-pot synthesis of a new class of Kevlar-like aerogels based on the rather underutilized reaction of multifunctional isocyanates and carboxylic acids. The resulting materials are up to 84% v/v porous with surface areas as high as 380 m2 g-1. The ultimate compressive strength per unit density is within 10% equal to that of Kevlar 49. The high specific energy absorption (37 J g-1) and Styrofoam-like thermal conductivity (0.028 W m-1 K-1) combined with thermal stability up to 350 °C render aramid aerogels multifunctional materials suitable for defense, civil and transportation related applications. Upon pyrolysis at 800 °C they can be converted to 80% (v/v) porous, electrically conducting carbons with surface areas as high as 474 m2 g-1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.