Abstract

A branched hybrid of MnO 2/graphene/carbon nanotube (CNT) is generated in a one-pot reaction process by chemical method. Some ultrathin MnO 2/graphene nanosheets, around 5 nm in thickness, are randomly distributed on the CNT surface. Morphology, phase structure, microstructure and vibrational properties of the hybrid were characterized by field emission scanning electron microscope, X-ray diffractometer, high resolution transmission electron microscope and Raman spectrometer. Elemental distribution of the hybrid was determined by energy dispersive X-ray mapping performed in scanning transmission electron microscope mode. The key factor of the formation mechanism is associated with both redox and oxidation–intercalation reactions. Graphene flakes are partly exfoliated from the surface layers of the CNTs, and the redox reaction between KMnO 4 and hydroxyl groups occurs on both sides of these flakes, resulting in the formation of a MnO 2/graphene/CNT hybrid. Brunauer–Emmett–Teller surface area measurements indicate that the hybrid has over four times the specific surface area of the pristine CNTs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.