Abstract

Ethylenediamine (EDA) functionalized mesoporous MCM-41 particles displaying various functionalization levels have been prepared by one-pot method. The prepared samples were treated with Fe(III) to form cationic complexes inside MCM-41 pores (MCM-41-NN-Fe-x%, x=10, 20 and 30) for trapping phosphate from water. The prepared adsorbents were characterized by XRD, BET, TGA and elemental analysis, and their phosphate adsorption performances were studied. The results showed that the phosphate removal rate of all the prepared adsorbents were higher than 95% at the initial phosphate concentration of 2 ppm. Additionally, the Langmuir model was used to simulate the sorption equilibrium, and the results indicated that the experiment data agreed well with the Langmuir model. The maximum adsorption capacities calculated from the Langmuir model increased with the increase of diamino loadings in adsorbents, and the maximum adsorption capacities of MCM-41-NN-Fe-30% was 52.5 mg/g.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call