Abstract

A cost-effective one-pot hydrothermal route was used to prepare novel magnetic CuO/Fe2O3/CuFe2O4 nanocomposites activating persulfate (PS) to remove levofloxacin from water. The optimized CuO/Fe2O3/CuFe2O4 sample (denoted as CuFeO-2) possessed a higher catalytic performance for levofloxacin degradation by activating PS than those of CuO, Fe2O3, CuFe2O4 and recently reported heterogeneous catalysts. After 120 min, the degradation efficiency and the mineralization degree of levofloxacin (10 mg∙L−1) in CuFeO-2/PS system reached 75.5% and 64.5%, respectively. The influence of some significant reaction parameters (e.g., PS dosage, catalyst dosage, initial pH, temperature and coexisting inorganic anions) on levofloxacin removal in CuFeO-2/PS system was studied and analyzed. Although the catalytic activity of magnetic CuFeO-2 slightly declined after each cycle due to the loss of active Cu(II), the recyclability of CuFeO-2 was significantly better than that of CuO. The trapping experiments and ESR studies confirmed that singlet oxygen (1O2), sulfate radical (SO4•−) and hydroxyl radical (•OH) were generated in CuFeO-2/PS system, thus, the degradation of levofloxacin can be achieved via the non-radical and radical oxidation processes. The role of copper, iron and oxygen elements in CuFeO-2 on PS activation was investigated by ART-FTIR and XPS. The possible degradation routes of levofloxacin were put forward according to the detected intermediate products. Moreover, the performance of CuFeO-2/PS system for levofloxacin degradation in real water matrix was also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.